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Predicting the spread of wildlife disease is
critical for identifying populations at risk, tar-
geting surveillance and designing proactive
management programmes. We used a landscape
genetics approach to identify landscape features
that influenced gene flow and the distribution
of chronic wasting disease (CWD) in Wisconsin
white-tailed deer. CWD prevalence was nega-
tively correlated with genetic differentiation of
study area deer from deer in the area of disease
origin (core-area). Genetic differentiation was
greatest, and CWD prevalence lowest, in areas
separated from the core-area by the Wisconsin
River, indicating that this river reduced deer
gene flow and probably disease spread.
Features of the landscape that influence host
dispersal and spatial patterns of disease can be
identified based on host spatial genetic
structure. Landscape genetics may be used to
predict high-risk populations based on their
genetic connection to infected populations and
to target disease surveillance, control and pre-
ventative activities.
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1. INTRODUCTION
Recent theoretical and empirical studies have
demonstrated that disease spread is often more
complex than predicted by simple diffusion models
(see Hastings et al. (2005) for a review). Under-
standing factors responsible for spatial heterogeneity
in the distribution of wildlife disease can be challen-
ging, but it is critical for identifying populations at
highest risk of infection, determining risks to
domestic animals and humans, and designing
optimal surveillance and control programmes.
Chronic wasting disease (CWD) is a fatal neuro-
degenerative disease whose distribution in south-central
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Wisconsin (WI) free-ranging white-tailed deer
(Odocoileus virginianus) is heterogeneous outside of the
area of disease introduction (core-area; Joly ez al. 2006).
Although the mechanisms responsible for CWD spread
are uncertain, dispersing deer probably play an import-
ant role. Dispersal distance and direction in white-tailed
deer are strongly influenced by habitat type, fragmenta-
tion and land use (Long et al. 2005; Nixon et al. 2007).
Identifying factors that influence dispersal may be
useful for predicting disease spread and developing
control strategies.

The objective of landscape genetics is to identify
how landscape features influence animal dispersal
patterns and population genetic structure (see Manel
et al. (2003) and Storfer er al. (2007) for reviews). We
demonstrate that landscape genetics can also be used
to understand heterogeneity in the spatial distribution
of disease. We used estimates of deer population
genetic structure to identify barriers to gene flow and
to determine whether gene flow patterns could
explain the spatial distribution of CWD in south-
central Wisconsin. We tested the hypotheses that:
(i) there is significant spatial genetic structure in deer
across south-central Wisconsin; (i) genetic structure
was related to landscape features that are likely to
influence deer dispersal; and (iii) spatial genetic
structure was correlated with spatial variation in
CWD prevalence.

2. MATERIAL AND METHODS

Our study encompassed a 3763 km? region of south-central
Wisconsin where the white-tailed deer population is infected with
CWD. Details about the study region, deer harvest and diagnostic
methods were described previously (Joly ez al. 2006; Grear et al.
2006). We collected samples from 681 female deer (fawns and
more than 2 years old) harvested during autumn 2002 or 2004
from fourteen, 41.4 km? study areas (figure 1, see table 1 in the
electronic supplementary material). Also included were samples
from 205 female deer harvested from a 41.4 km? region of the core-
area (area of highest disease prevalence and estimated origin of
CWD in south-central W1, figure 1) previously genotyped for other
studies. We selected female deer, as the traditionally non-dispersing
sex, because they are more likely to represent local genetic
characteristics than males (Hawkins & Klimstra 1970). Study areas
were selected based on their distance from the core-area and
landscape features we hypothesized influence deer dispersal and
disease spread. These features were the Wisconsin River running
roughly east-west through the northern third of the region and US
Highway 18/151 running east-west through the southern third of
the region (figure 1). The prevalence of CWD for each study area
(see table 1 in the electronic supplementary material) was
determined based on the number of CWD-infected deer harvested
relative to the total number of deer harvested from 2002 to 2005.

DNA was extracted from tissue using the QIAGEN DNeasy
extraction kit. All individuals were genotyped at seven nuclear,
bi-parentally inherited microsatellite loci (BM1225, BM4107,
BM4208, BM6506, CSN3, Bishop er al. 1994; RT23, RT27,
Wilson et al. 1997). Genotyping was conducted following protocols
similar to those described in Grear (2006). We used exact statistical
tests (Guo & Thompson 1992) in GENEPOP (wbiomed.curtin.edu.
au/genepop/, Raymond & Roussett 1995) to confirm linkage and
Hardy-Weinberg equilibrium in each study area.

To test for spatial genetic structure in the deer population across
south-central Wisconsin, we calculated Fgt (the proportion of the
total genetic diversity apportioned among study areas relative to the
total genetic diversity, referred to henceforth as ‘genetic differen-
tiation’) across the region and estimated the standard error
by jackknifing over loci. We also calculated genetic differentiation
between each study area and the core-area using Weir &
Cockerham’s estimator of Fgpr (Weir & Cockerham 1984) using
Fstar v. 2.9.3 (Goudet 1995).

We used a multiple linear regression to identify factors influen-
cing genetic differentiation between each study area and the core-
area. Explanatory variables included distance from the core-area
(km) and separation from the core-area by potential ‘barriers’

This journal is © 2007 The Royal Society
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Figure 1. Map of south-central Wisconsin illustrating 2.6-km? sections where CWD-infected deer were identified (small grey
dots) through 2005, the ‘core-area’ of presumed disease introduction (large black circle), the location of the 15 study areas
(black squares, 41.4 km?) and the location of landscape features hypothesized to influence deer dispersal and disease spread
(Wisconsin River, US Highway 18/151). The light grey border illustrates the CWD eradication zone.
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Figure 2. Box plots of (@) CWD prevalence in study areas and (b) genetic differentiation (Fst) of study areas from the core-
area with study areas grouped based on their location relative to landscape features separating study areas from the core-area.

(i.e. the Wisconsin River, US Highway 18/151, no barrier) modelled
as a three-level categorical variable. We also used a multiple
regression to evaluate whether genetic differentiation between study
areas and the core-area was associated with CWD prevalence using a
Poisson distribution based on the total number of animals tested and
the number of CWD positives in each study area. The relative fit of
models was compared using Akaike’s information criterion (AIC;
Burnham & Anderson 2002). All regression analyses were conducted
in program R (R Development Core Team 2006).

3. RESULTS

Overall, we found low but significant genetic differen-
tiation among all study areas across the region (mean
Fs1=0.00324+0.001, p<0.01) consistent with lim-
ited deer population substructure in south-central
Waisconsin. Analysis of genetic divergence between
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deer in each of the 14 study areas and deer in the core-
area indicated variation among study areas in their
levels of genetic differentiation from the core-area
(see table 1 in the electronic supplementary material).
Variation in genetic differentiation was related to
landscape characteristics that we hypothesized would
influence deer dispersal. Our multiple regression
analyses indicated that our model including potential
barriers to deer movement (WI River, Highway US-
18/151; AIC= —136.69) explained significantly more
variation in Fgr-values than a model including only
distance (AIC= —132.61). We found that study areas
north of the Wisconsin River were the most genetically
different from deer in the core-area (figure 2;
see table 2 in the electronic supplementary material).
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In addition, genetic differentiation between study area
and core-area deer was significantly negatively
correlated with CWD prevalence in these study
areas (figure 2; see table 3 in the electronic
supplementary material).

4. DISCUSSION

Movement of infected hosts is often a key component
of disease spread. Identification of landscape charac-
teristics affecting wildlife dispersal is important for
predicting the spread of disease and developing
proactive management. The spread of raccoon rabies,
for example, is influenced by physical barriers (e.g.
rivers and forest cover) that influence raccoon
(Procyon lotor) movement (Smith ez al. 2002, 2005).
Identification of barriers to disease movement could
be used to enhance disease containment strategies. It
was hypothesized that rabies vaccination in conjunc-
tion with a river barrier would create a refuge from
disease by limiting host dispersal and subsequent
rabies epidemics (Russell er al. 2006).

As we demonstrated, landscape genetics offers a
promising approach for identifying relationships
between landscape features and population genetic
structure in the context of a wildlife disease. Genetic
differentiation (Fst) was significantly correlated with
CWD prevalence (see table 3 in the electronic
supplementary material). The Wisconsin River had a
significant influence on gene flow between study area
and core-area deer; however, US Highway 18/151 did
not appear to limit gene flow. The US-18/151 is a
relatively recently established highway that appears to
demarcate a change from primarily continuous
forested habitat to the north to more fragmented,
agricultural habitat to the south. Differences in land-
scape contiguity and other factors such as deer
density, forest cover and land use can affect deer
dispersal rates and distances (Nixon er al. 2007) as
well as influence the rate at which disease establishes
and increases in prevalence locally.

Our approach could be extended to identify connec-
tivity between infected and uninfected populations and
to characterize infection risk based on deer dispersal
patterns. Features of the landscape shaping those
patterns could be incorporated in spatial epidemiologi-
cal models aimed at predicting CWD spread. One must
be aware that patterns of spatial genetic structure do
not account for infected animals that move without
breeding as well as other factors that may be responsible
for disease spread (e.g. human transport, alternate
hosts, vectors). In addition, while dispersal of infected
animals may be the mechanism by which disease
spreads spatially, other factors such as population
density and habitat characteristics may affect local rates
of disease establishment, transmission and growth.
Ideally, prediction of geographical spread of infection
should be linked with predictions that consider the
impact of local scale epidemiological and ecological
factors on rates of disease establishment and growth.

The social, political and economic impacts of wildlife
diseases are far-reaching (e.g. Heberlein 2004; Decker
et al. 2006) and understanding patterns of disease spread
is critical to effective disease management. Many factors
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make identifying or preventing disease spread difficult,
including the lack of observable signs in infected
animals, the enormous sampling effort needed to detect
disease at low prevalence and uncertainty in routes of
transmission. Our results suggest that with careful
selection of markers based on considerations of mutation
rate, population size, gene flow and spatial scale that
landscape genetics may be a useful tool to identify
connectivity between infected and uninfected popu-
lations as a function of landscape features influencing
host dispersal. This approach may help to identify
populations at highest risk for disease to guide surveil-
lance, vaccination or population reduction programmes.
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Animal Care and Use Committee.
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